

granary documentation

About

Granary is a library and REST API that converts between a wide variety
of formats:

	Facebook, Flickr, Google+, Instagram, and Twitter native APIs

	Instagram and Google+ scraped HTML

	ActivityStreams [http://activitystrea.ms/] (1, mostly)

	microformats2 [http://microformats.org/wiki/microformats2] HTML
and JSON

	Atom [http://atomenabled.org/]

	XML

	JSON Feed [https://jsonfeed.org/]

Here’s how to get started:

	Granary is available on
PyPi. [https://pypi.python.org/pypi/granary/] Install with
pip install granary.

	Click here for getting started docs.

	Click here for reference
docs. [https://granary.readthedocs.io/en/latest/source/granary.html]

	The REST API and demo app are deployed at
granary-demo.appspot.com [https://granary-demo.appspot.com/].

License: This project is placed in the public domain.

Using

All dependencies are handled by pip and enumerated in
requirements.txt [https://github.com/snarfed/granary/blob/master/requirements.txt].
We recommend that you install with pip in a
virtualenv [http://docs.python-guide.org/en/latest/dev/virtualenvs/].
(App Engine
details. [https://cloud.google.com/appengine/docs/python/tools/libraries27#vendoring])

The library and REST API are both based on the OpenSocial Activity
Streams
service [https://opensocial.github.io/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service].

Let’s start with an example. This code using the library:

from granary import twitter
...
tw = twitter.Twitter(ACCESS_TOKEN_KEY, ACCESS_TOKEN_SECRET)
tw.get_activities(group_id='@friends')

is equivalent to this HTTP GET request:

https://granary-demo.appspot.com/twitter/@me/@friends/@app/
 ?access_token_key=ACCESS_TOKEN_KEY&access_token_secret=ACCESS_TOKEN_SECRET

They return the authenticated user’s Twitter stream, ie tweets from the
people they follow. Here’s the JSON output:

{
 "itemsPerPage": 10,
 "startIndex": 0,
 "totalResults": 12,
 "items": [{
 "verb": "post",
 "id": "tag:twitter.com,2013:374272979578150912",
 "url": "http://twitter.com/evanpro/status/374272979578150912",
 "content": "Getting stuff for barbecue tomorrow. No ribs left! Got some nice tenderloin though. (@ Metro Plus Famille Lemay) http://t.co/b2PLgiLJwP",
 "actor": {
 "username": "evanpro",
 "displayName": "Evan Prodromou",
 "description": "Prospector.",
 "url": "http://twitter.com/evanpro",
 },
 "object": {
 "tags": [{
 "url": "http://4sq.com/1cw5vf6",
 "startIndex": 113,
 "length": 22,
 "objectType": "article"
 }, "..."],
 },
 }, "..."]
 "..."
}

The request parameters are the same for both, all optional: USER_ID
is a source-specific id or @me for the authenticated user.
GROUP_ID may be @all, @friends (currently identical to
@all), @self, @search, or @blocks; APP_ID is
currently ignored; best practice is to use @app as a placeholder.

Paging is supported via the startIndex and count parameters.
They’re self explanatory, and described in detail in the OpenSearch
spec [http://www.opensearch.org/Specifications/OpenSearch/1.1#The_.22count.22_parameter]
and OpenSocial
spec [https://opensocial.github.io/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service].

When using the GROUP_ID @search (for platforms that support it —
currently Twitter and Instagram), provide a search string via the q
parameter. The API is loosely based on the OpenSearch
spec [http://www.opensearch.org/Specifications/OpenSearch/1.1#OpenSearch_URL_template_syntax],
the OpenSocial Core Container
spec [http://opensocial.github.io/spec/2.5.1/Core-Container.xml#rfc.section.11.2],
and the OpenSocial Core Gadget
spec [http://opensocial.github.io/spec/2.5.1/Core-Gadget.xml#OpenSearch].

Output data is JSON Activity Streams
1.0 [http://activitystrea.ms/specs/json/1.0/] objects wrapped in the
OpenSocial
envelope [https://opensocial.github.io/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service],
which puts the activities in the top-level items field as a list and
adds the itemsPerPage, totalCount, etc. fields.

Most Facebook requests and all Twitter, Google+, Instagram, and Flickr
requests will need OAuth access tokens. If you’re using Python on Google
App Engine, oauth-dropins [https://github.com/snarfed/oauth-dropins]
is an easy way to add OAuth client flows for these sites. Otherwise,
here are the sites’ authentication docs:
Facebook [https://developers.facebook.com/docs/facebook-login/access-tokens/],
Flickr [https://www.flickr.com/services/api/auth.oauth.html],
Google+ [https://developers.google.com/+/api/oauth#about],
Instagram [http://instagram.com/developer/authentication/],
Twitter [https://dev.twitter.com/docs/auth/3-legged-authorization].

If you get an access token and pass it along, it will be used to sign
and authorize the underlying requests to the sources providers. See the
demos on the REST API endpoints above for examples.

Using the REST API

The endpoints above all serve the OpenSocial Activity
Streams REST
API [https://opensocial.github.io/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service].
Request paths are of the form:

/USER_ID/GROUP_ID/APP_ID/ACTIVITY_ID?startIndex=...&count=...&format=FORMAT&access_token=...

All query parameters are optional. FORMAT may be json (the
default), xml, or atom, both of which return
Atom [http://www.intertwingly.net/wiki/pie/FrontPage]. atom
supports a boolean reader query parameter for toggling rendering
appropriate to feed readers, e.g. location is rendered in content when
reader=true (the default). The rest of the path elements and query
params are described above.

Errors are returned with the appropriate HTTP response code, e.g. 403
for Unauthorized, with details in the response body.

By default, responses are cached and reused for 5m without re-fetching
the source data. (Instagram responses are cached for 60m.) You can
prevent this by adding the cache=false query parameter to your
request.

To use the REST API in an existing ActivityStreams client, you’ll need
to hard-code exceptions for the domains you want to use e.g.
facebook.com, and redirect HTTP requests to the corresponding
endpoint above.

The web UI
(granary-demo.appspot.com [https://granary-demo.appspot.com/])
currently only fetches Facebook access tokens for users. If you want to
use it to access a Facebook page, you’ll need to get an access token
manually with the Graph API
Explorer [https://developers.facebook.com/tools/explorer/] (click on
the Get To... drop-down) . Then, log into Facebook on
granary-demo.appspot.com [https://granary-demo.appspot.com/] and
paste the page access token into the access_token text box.

(Google+ pages aren’t supported in their
API [https://github.com/snarfed/bridgy/issues/354].)

Using the library

See the example above for a quick start guide.

Clone or download this repo into a directory named granary (note the
underscore instead of dash). Each source works the same way. Import the
module for the source you want to use, then instantiate its class by
passing the HTTP handler object. The handler should have a request
attribute for the current HTTP request.

The useful methods are get_activities() and get_actor(), which
returns the current authenticated user (if any). See the individual
method
docstrings [https://github.com/snarfed/granary/blob/master/source.py]
for details. All return values are Python dicts of decoded
ActivityStreams JSON.

The microformats2.*_to_html() functions are also useful for
rendering ActivityStreams objects as nicely formatted HTML.

Troubleshooting/FAQ

Check out the oauth-dropins Troubleshooting/FAQ
section [https://github.com/snarfed/oauth-dropins#troubleshootingfaq].
It’s pretty comprehensive and applies to this project too. For
searchability, here are a handful of error messages that have solutions
there [https://github.com/snarfed/oauth-dropins#troubleshootingfaq]:

bash: ./bin/easy_install: ...bad interpreter: No such file or directory

ImportError: cannot import name certs

ImportError: cannot import name tweepy

File ".../site-packages/tweepy/auth.py", line 68, in _get_request_token
 raise TweepError(e)
TweepError: must be _socket.socket, not socket

Future work

We’d love to add more sites! Off the top of my head,
YouTube [http://youtu.be/], Tumblr [http://tumblr.com/],
WordPress.com [http://wordpress.com/], Sina
Weibo [http://en.wikipedia.org/wiki/Sina_Weibo],
Qzone [http://en.wikipedia.org/wiki/Qzone], and
RenRen [http://en.wikipedia.org/wiki/Renren] would be good
candidates. If you’re looking to get started, implementing a new site is
a good place to start. It’s pretty self contained and the existing sites
are good examples to follow, but it’s a decent amount of work, so you’ll
be familiar with the whole project by the end.

Development

Pull requests are welcome! Feel free to ping
me [http://snarfed.org/about] with any questions.

You’ll need the App Engine Python
SDK [https://cloud.google.com/appengine/downloads#Google_App_Engine_SDK_for_Python]
version 1.9.15 or later (for
vendor [https://cloud.google.com/appengine/docs/python/tools/libraries27#vendoring]
support). Add it to your $PYTHONPATH, e.g.
export PYTHONPATH=$PYTHONPATH:/usr/local/google_appengine, and then
run:

virtualenv local
source local/bin/activate
pip install -r requirements.txt
python setup.py test

If you send a pull request, please include (or update) a test for the
new functionality if possible! The tests require the App Engine
SDK [https://developers.google.com/appengine/downloads] or the
Google Cloud SDK [https://cloud.google.com/sdk/gcloud/] (aka
gcloud) with the gcloud-appengine-python and
gcloud-appengine-python-extras
components [https://cloud.google.com/sdk/docs/components#additional_components].

If you want to work on
oauth-dropins [https://github.com/snarfed/oauth-dropins] at the same
time, install it in “source” mode with
pip install -e <path to oauth-dropins repo>.

To deploy:

python -m unittest discover && ~/google_appengine/appcfg.py update .

To deploy facebook-atom [https://github.com/snarfed/facebook-atom],
twitter-atom [https://github.com/snarfed/twitter-atom],
instagram-atom [https://github.com/snarfed/instagram-atom], and
plusstreamfeed [http://plusstreamfeed.appspot.com/] after a granary
change:

#!/bin/tcsh
foreach s (facebook-atom twitter-atom instagram-atom plusstreamfeed)
 cd ~/src/$s && ~/google_appengine/appcfg.py update .
end

To deploy the old *-activitystreams.appspot.com apps:

cd old_apps
rm -f app.yaml && ln -s app.twitter.yaml app.yaml && \
 ~/google_appengine/appcfg.py update . && \
rm -f app.yaml && ln -s app.facebook.yaml app.yaml && \
 ~/google_appengine/appcfg.py update . && \
rm -f app.yaml && ln -s app.instagram.yaml app.yaml && \
 ~/google_appengine/appcfg.py update . && \
git co -- app.yaml

The docs are built with Sphinx [http://sphinx-doc.org/], including
apidoc [http://www.sphinx-doc.org/en/stable/man/sphinx-apidoc.html],
autodoc [http://www.sphinx-doc.org/en/stable/ext/autodoc.html], and
napoleon [http://www.sphinx-doc.org/en/stable/ext/napoleon.html].
Configuration is in
docs/conf.py [https://github.com/snarfed/granary/blob/master/docs/conf.py]
To build them, first install Sphinx with pip install sphinx. (You
may want to do this outside your virtualenv; if so, you’ll need to
reconfigure it to see system packages with
virtualenv --system-site-packages local.) Then, run
docs/build.sh [https://github.com/snarfed/granary/blob/master/docs/build.sh].

This ActivityStreams
validator [http://activitystreamstester.appspot.com/] is useful for
manual testing.

Related work

Apache Streams [http://streams.incubator.apache.org/] is a similar
project that translates between storage systems and database as well as
social schemas. It’s a Java library, and its design is heavily
structured. Here’s the list of formats it
supports. [http://streams.incubator.apache.org/site/0.3-incubating-SNAPSHOT/streams-project/streams-contrib/index.html]
It’s mainly used by People Pattern [http://www.peoplepattern.com/].

Gnip [http://gnip.com/] similarly converts social network data to
ActivityStreams [http://support.gnip.com/documentation/activity_streams_intro.html]
and supports many more source networks [http://gnip.com/sources/].
Unfortunately, it’s commercial, there’s no free trial or self-serve
signup, and plans start at $500 [http://gnip.com/products/pricing/].

DataSift [http://datasift.com/] looks like broadly the same thing,
except they offer self-serve, pay as you go
billing [http://dev.datasift.com/docs/billing], and they use their
own proprietary output
format [http://dev.datasift.com/docs/getting-started/data] instead of
ActivityStreams. They’re also aimed more at data mining as opposed to
individual user access.

Cliqset’s
FeedProxy [http://www.readwriteweb.com/archives/cliqset_activity_streams_api.php]
used to do this kind of format translation, but unfortunately it and
Cliqset died.

Facebook used to [https://developers.facebook.com/blog/post/225/]
officially [https://developers.facebook.com/blog/post/2009/08/05/streamlining-the-open-stream-apis/]
support [https://groups.google.com/forum/#!topic/activity-streams/-b0LmeUExXY]
ActivityStreams, but that’s also dead.

There are a number of products that download your social network data,
normalize it, and let you query and visualize it.
SocialSafe [http://socialsafe.net/] is one, although the SSL
certificate is currently out of date.
ThinkUp [http://web.archive.org/web/20161108212106/http://www.thinkup.com/]
was an open source product, but shuttered on 18 July 2016. There’s also
the lifelogging/lifestream aggregator vein of projects that pull data
from multiple source sites.
Storytlr [https://github.com/storytlr/storytlr] is a good example.
It doesn’t include Facebook, Google+, or Instagram, but does include a
number of smaller source sites. There are lots of others, e.g. the
Lifestream WordPress
plugin [http://www.enthropia.com/labs/wp-lifestream/]. Unfortunately,
these are generally aimed at end users, not developers, and don’t
usually expose libraries or REST APIs.

On the open source side, there are many related projects.
php-mf2-shim [https://github.com/indieweb/php-mf2-shim] adds
microformats2 [http://microformats.org/wiki/microformats2] to
Facebook and Twitter’s raw HTML.
sockethub [https://github.com/sockethub/sockethub] is a similar
“polyglot” approach, but more focused on writing than reading.

Changelog

1.8 - 2017-08-29

	Add JSON Feed [https://jsonfeed.org/] support to both library and
REST API.

	Twitter:
	Add get_blocklist().

	Bug fix for creating replies, favorites, or retweets of video
URLs, e.g. https://twitter.com/name/status/123/video/1 .

	Bug fix for parsing favorites HTML to handle a small change on
Twitter’s side.

	post_id() now validates ids more strictly before returning
them.

	Facebook:
	Improve heuristic for determining privacy of wall posts from other
users.

	Support GIFs in comments (attachment types
animated_image_autoplay and animated_image_share).

	Upgrade Graph API from
v2.6 [https://developers.facebook.com/docs/apps/changelog#v2_6]
to
v2.10 [https://developers.facebook.com/docs/apps/changelog#v2_10].

	Instagram:
	Update scraping to handle new home page (ie news feed) JSON
schema, which changed sometime around 2017-02-27. (Profile pages
and individual photo/video permalinks still haven’t changed yet.)

	microformats2:
	Add u-featured [https://indieweb.org/featured] to
ActivityStreams image.

	Improve h-event support.

	Minor whitespace change (added <p>) when rendering locations as HTML.

	post_id() now validates ids more strictly before returning
them.

	Fix bugs in converting latitude and longitude between
ActivityStreams and mf2.

	Google+:
	Update HTML scraping to handle changed serialized JSON data
format.

	Atom:
	Add new activity_to_atom() function that renders a single
top-level <entry> instead of <feed>.

	Add new reader query param for toggling rendering decisions
that are specific to feed readers. Right now, just affects
location: it’s rendered in the content when reader=true (the
default), omitted when reader=false.

	Include author name when rendering attached articles and notes
(e.g. quote tweets).

	Only include AS activity:object-type and activity:verb
elements when they have values.

	Render AS image and mf2 u-photo if they’re not already in content.

	Render thr:in-reply-to from object.inReplyTo as well as
activity.context.inReplyTo.

	REST API:
	Fix bugs in html => json-mf2 and html => html conversions.

	Upgrade brevity to 0.2.14 for a couple
bug [https://github.com/kylewm/brevity/issues/5]
fixes [https://github.com/kylewm/brevity/issues/6].

1.7 - 2017-02-27

	microformats2:
	Interpret h-cite and u-quotation-of`
(experimental) <https://indieweb.org/quotation#How_to_markup>`__
as attachments, e.g. for quote tweets.

	Convert audio [http://indieweb.org/audio] and
video [http://indieweb.org/video] properties to AS
attachments.

	Twitter:
	Linkify @-mentions and hashtags in preview_create().

	Support creating quote tweets from attachments with Twitter URLs.

	When converting quote tweets to AS, strip quoted tweet URL from
end of text.

	Raise ValueError when get_activities() is passed
group_id='@search' but not search_query.

	Instagram:
	Improve HTML scraping error handling.

	Support multi-photo/video
posts [https://www.instagram.com/p/BQ0mDB2gV_O/].

	Facebook:
	Disable creating “interested” RSVPs, since Facebook’s API doesn’t
allow it.

	Atom:
	Support media
enclosures [http://atomenabled.org/developers/syndication/#link]
for audio and video attachments.

	Source.get_activities(): start raising ValueError on bad argument
values, notably invalid Facebook and Twitter ids and Instagram search
queries.

	Fix rendering and linkifying content with Unicode high code points
(ie above the 16-bit Basic Multilingual Plane), including some emoji,
on “narrow” builds of Python 2 with --enable-unicode=ucs2, which
is the default on Mac OS X, Windows, and older *nix.

1.6 - 2016-11-26

	Twitter:
	Handle new “extended” tweets with hidden reply-to @-mentions and
trailing URLs for media, quote tweets, etc. Background:
https://dev.twitter.com/overview/api/upcoming-changes-to-tweets

	Bug fix: ensure like.author.displayName is a plain unicode string
so that it can be pickled normally, e.g. by App Engine’s memcache.

	Bug fix: handle names with emoji correctly in
favorites_html_to_likes().

	Bug fix: handle search queries with unicode characters.

	Atom:
	Render full original quoted tweet in retweets of quote tweets.

	microformats2 HTML:
	Optionally follow and fetch rel=”author” links.

	Improve mapping between microformats2 and ActivityStreams ‘photo’
types. (mf2 ‘photo’ type is a note or article with a photo, but
AS ‘photo’ type is a photo. So, map mf2 photos to underlying
type without photo.)

	Support location properties beyond h-card, e.g. h-adr, h-geo,
u-geo, and even when properties like latitude and longitude appear
at the top level.

	Error handling: return HTTP 502 for non-JSON API responses, 504 for
connection failures.

1.5 - 2016-08-25

	REST API:
	Support tag URI for user id, app id, and activity id.

	Twitter:
	Better error message when uploading a photo with an unsupported
type.

	Only include original quote tweets, not retweets of them.

	Skip fetching retweets for protected accounts since the API call
always 403s.

	Flickr:
	Better username detection. Flickr’s API is very inconsistent about
username vs real name vs path alias. This specifically detects
when a user name is probably actually a real name because it has a
space.

	Uploading: detect and handle App Engine’s 10MB HTTP request limit.

	Bug fix in create: handle unicode characters in photo/video
description, hashtags, and comment text.

	Atom:
	Bug fix: escape &s in attachments’ text (e.g. quote tweets).

1.4.1 - 2016-06-27

	Bump oauth-dropins requirement to 1.4.

1.4.0 - 2016-06-27

	REST API:
	Cache silo requests for 5m by default, 60m for Instagram because
they aggressively blocking scraping. You can skip the cache with
the new cache=false query param.

	Facebook:
	Upgrade from API v2.2 to v2.6.
https://developers.facebook.com/docs/apps/changelog

	Add reaction support.

	De-dupe event RSVPs by user.

	Twitter:
	Switch create() to use brevity for counting characters.
https://github.com/kylewm/brevity

	Fix bug in create() that occasionally incorrectly escaped ., +,
and - characters.

	Fix text rendering bug when there are multipl photos/videos.

	When replying to yourself, don’t add a self @-mention.

	Instagram:
	Fix bugs in scraping.

	Upgrade to requests 2.10.0 and requests-toolbelt 0.60, which support
App Engine.

1.3.1 - 2016-04-07

	Update oauth-dropins [https://github.com/snarfed/oauth-dropins]
dependency to >=1.3.

1.3.0 - 2016-04-06

	Support posting videos! Currently in Facebook, Flickr, and Twitter.

	Instagram:
	Add support for scraping, since they’re locking down their API
and requiring manual
approval [http://developers.instagram.com/post/133424514006/instagram-platform-update].

	Linkify @-mentions in photo captions.

	Facebook:
	Fetch Open Graph
stories [https://developers.facebook.com/docs/reference/opengraph/action-type/news.publishes/]
aka news.publish actions.

	Many bug fixes for photo posts: better privacy detection, fix bug
that attached comments to wrong posts.

	Twitter:
	Handle all photos/videos attached to a tweet, not just the first.

	Stop fetching replies to @-mentions.

	Atom:
	Render attachments.

	Add xml:base.

	microformats2:
	Load and convert h-card.

	Implement full post type discovery algorithm, using mf2util.
https://indiewebcamp.com/post-type-discovery

	Drop support for h-as-* classes, both incoming and outgoing.
They’re deprecated in favor of post type discovery.

	Drop old deprecated u-like and u-repost properties.

	Misc bug fixes.

	Set up Coveralls.

1.2.0 - 2016-01-11

	Improve original post discovery algorithm. (bridgy
#51 [https://github.com/snarfed/bridgy/issues/51])

	Flickr tweaks. (bridgy
#466 [https://github.com/snarfed/bridgy/issues/466])

	Add mf2, activitystreams, atom, and search to interactive UI.
(#31 [https://github.com/snarfed/granary/issues/31],
#29 [https://github.com/snarfed/granary/issues/29])

	Improved post type discovery (using mf2util).

	Extract user web site links from all fields in profile (e.g.
description/bio).

	Add fabricated fragments to comment/like permalinks (e.g.
#liked-by-user123) so that object urls are always unique (multiple
silos).

	Improve formatting/whitespace support in create/preview (multiple
silos).

	Google+:
	Add search.

	Facebook:
	Fetch more things in get_activities: photos, events, RSVPs.

	Support person tags in create/preview.

	Prevent facebook from automatically consolidating photo posts by
uploading photos to “Timeline Photos” album.

	Include title in create/preview.

	Improve object id parsing/resolving.

	Improve tag handling.

	Bug fix for fetching nested comments.

	Misc improvements, API error/flakiness handling.

	Flickr:
	Create/preview support for photos, comments, favorites, tags,
person tags, location.

	Twitter:
	Create/preview support for location, multiple photos.

	Fetch quote tweets.

	Fetching user mentions improvements, bug fixes.

	Fix embeds.

	Misc AS conversion improvements.

	microformats2:
	Improve like and repost rendering.

	Misc bug fixes.

	Set up CircleCI.

1.1.0 - 2015-09-06

	Add Flickr.

	Facebook:
	Fetch multiple id formats, e.g. with and without USERID_ prefix.

	Support threaded comments.

	Switch from /posts API endpoint to /feed.

	Google+:
	Support converting plus.google.com HTML to ActivityStreams.

	Instagram:
	Support location.

	Improve original post discovery algorithm.

	New logo.

1.0.1 - 2015-07-11

	Bug fix for atom template rendering.

	Facebook, Instagram: support access_token parameter.

1.0 - 2015-07-10

	Initial PyPi release.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 granary	

 	
 	
 granary.atom	

 	
 	
 granary.facebook	

 	
 	
 granary.flickr	

 	
 	
 granary.googleplus	

 	
 	
 granary.instagram	

 	
 	
 granary.microformats2	

 	
 	
 granary.source	

 	
 	
 granary.twitter	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(granary.twitter.OffsetTzinfo method)

 	(granary.twitter.Twitter method)

 	
 	__metaclass__ (granary.source.Source attribute)

 	__weakref__ (granary.source.RateLimited attribute)

 	(granary.source.Source attribute)

 	(granary.twitter.OffsetTzinfo attribute)

A

 	
 	abort (granary.source.CreationResult attribute)

 	access_token (granary.facebook.Facebook attribute)

 	activities_to_atom() (in module granary.atom)

 	activities_to_html() (in module granary.microformats2)

 	activity_changed() (granary.source.Source static method)

 	
 	activity_to_atom() (in module granary.atom)

 	activity_to_json() (in module granary.microformats2)

 	actor_name() (granary.source.Source static method)

 	add_rsvps_to_event() (granary.source.Source static method)

 	album_to_object() (granary.facebook.Facebook method)

 	author_display_name() (in module granary.microformats2)

B

 	
 	base_id() (granary.flickr.Flickr class method)

 	(granary.source.Source class method)

 	base_object() (granary.facebook.Facebook method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

C

 	
 	call_api_method() (granary.flickr.Flickr method)

 	comment (granary.facebook.FacebookId attribute)

 	comment_to_object() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.instagram.Instagram method)

 	comment_url() (granary.facebook.Facebook method)

 	content (granary.source.CreationResult attribute)

 	
 	create() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	create_notification() (granary.facebook.Facebook method)

 	creation_result() (in module granary.source)

 	CreationResult (class in granary.source)

D

 	
 	description (granary.source.CreationResult attribute)

E

 	
 	embed_actor() (granary.source.Source class method)

 	embed_post() (granary.source.Source class method)

 	error_html (granary.source.CreationResult attribute)

 	
 	error_plain (granary.source.CreationResult attribute)

 	event_to_activity() (granary.facebook.Facebook method)

 	event_to_object() (granary.facebook.Facebook method)

F

 	
 	Facebook (class in granary.facebook)

 	FacebookId (class in granary.facebook)

 	favorites_html_to_likes() (granary.twitter.Twitter method)

 	fetch_mentions() (granary.twitter.Twitter method)

 	
 	fetch_replies() (granary.twitter.Twitter method)

 	find_author() (in module granary.microformats2)

 	first_props() (in module granary.microformats2)

 	Flickr (class in granary.flickr)

 	fql_stream_to_post() (granary.facebook.Facebook method)

G

 	
 	get_activities() (granary.source.Source method)

 	get_activities_response() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	get_actor() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	get_albums() (granary.facebook.Facebook method)

 	get_blocklist() (granary.source.Source method)

 	(granary.twitter.Twitter method)

 	get_blocklist_ids() (granary.twitter.Twitter method)

 	get_comment() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	
 	get_event() (granary.facebook.Facebook method)

 	(granary.source.Source method)

 	get_html() (in module granary.microformats2)

 	get_like() (granary.source.Source method)

 	get_reaction() (granary.facebook.Facebook method)

 	(granary.source.Source method)

 	get_rsvp() (granary.source.Source method)

 	get_rsvps_from_event() (granary.source.Source static method)

 	get_share() (granary.facebook.Facebook method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	get_string_urls() (in module granary.microformats2)

 	get_text() (in module granary.microformats2)

 	get_user_image() (granary.flickr.Flickr method)

 	GooglePlus (class in granary.googleplus)

 	granary.atom (module)

 	granary.facebook (module)

 	granary.flickr (module)

 	granary.googleplus (module)

 	granary.instagram (module)

 	granary.microformats2 (module)

 	granary.source (module)

 	granary.twitter (module)

H

 	
 	hcard_to_html() (in module granary.microformats2)

 	html_to_activities() (granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(in module granary.microformats2)

 	
 	html_to_atom() (in module granary.atom)

 	html_to_text() (in module granary.source)

I

 	
 	id_to_shortcode() (granary.instagram.Instagram static method)

 	img() (in module granary.microformats2)

 	
 	Instagram (class in granary.instagram)

 	is_public() (granary.source.Source static method)

J

 	
 	json_to_html() (in module granary.microformats2)

 	
 	json_to_object() (in module granary.microformats2)

L

 	
 	like_to_object() (granary.flickr.Flickr method)

 	(granary.instagram.Instagram method)

 	
 	load_json() (in module granary.source)

M

 	
 	make_activities_base_response() (granary.source.Source class method)

 	maybe_add_tags() (granary.googleplus.GooglePlus method)

 	maybe_datetime() (in module granary.microformats2)

 	
 	maybe_linked() (in module granary.microformats2)

 	maybe_linked_name() (in module granary.microformats2)

 	media_to_activity() (granary.instagram.Instagram method)

 	media_to_object() (granary.instagram.Instagram method)

O

 	
 	object_to_html() (in module granary.microformats2)

 	object_to_json() (in module granary.microformats2)

 	object_type() (in module granary.source)

 	
 	object_urls() (in module granary.microformats2)

 	OffsetTzinfo (class in granary.twitter)

 	original_post_discovery() (granary.source.Source static method)

P

 	
 	parse_id() (granary.facebook.Facebook static method)

 	partial (granary.source.RateLimited attribute)

 	path_alias() (granary.flickr.Flickr method)

 	photo_to_activity() (granary.flickr.Flickr method)

 	photo_url() (granary.flickr.Flickr method)

 	post (granary.facebook.FacebookId attribute)

 	post_id() (granary.source.Source class method)

 	post_to_activity() (granary.facebook.Facebook method)

 	post_to_object() (granary.facebook.Facebook method)

 	post_url() (granary.facebook.Facebook method)

 	
 	postprocess_activity() (granary.googleplus.GooglePlus method)

 	(granary.source.Source method)

 	postprocess_actor() (granary.googleplus.GooglePlus method)

 	postprocess_comment() (granary.googleplus.GooglePlus method)

 	postprocess_object() (granary.source.Source static method)

 	preview_create() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	privacy_to_to() (granary.facebook.Facebook method)

R

 	
 	RateLimited

 	render_content() (in module granary.microformats2)

 	resolve_object_id() (granary.facebook.Facebook method)

 	
 	retweet_to_object() (granary.twitter.Twitter method)

 	rfc2822_to_iso8601() (granary.twitter.Twitter static method)

 	rsvp_to_object() (granary.facebook.Facebook method)

S

 	
 	share_to_object() (granary.facebook.Facebook method)

 	Source (class in granary.source)

 	
 	SourceMeta (class in granary.source)

 	status_url() (granary.twitter.Twitter method)

 	streaming_event_to_object() (granary.twitter.Twitter method)

T

 	
 	tag_uri() (granary.source.Source method)

 	tags_to_html() (in module granary.microformats2)

 	tweet_to_activity() (granary.twitter.Twitter method)

 	
 	tweet_to_object() (granary.twitter.Twitter method)

 	tweet_url() (granary.twitter.Twitter method)

 	Twitter (class in granary.twitter)

U

 	
 	upload() (granary.flickr.Flickr method)

 	upload_images() (granary.twitter.Twitter method)

 	upload_video() (granary.twitter.Twitter method)

 	urlopen() (granary.facebook.Facebook method)

 	(granary.instagram.Instagram method)

 	(granary.twitter.Twitter method)

 	urlopen_batch() (granary.facebook.Facebook method)

 	urlopen_batch_full() (granary.facebook.Facebook method)

 	user (granary.facebook.FacebookId attribute)

 	user_id (granary.facebook.Facebook attribute)

 	
 	user_id() (granary.flickr.Flickr method)

 	user_to_actor() (granary.facebook.Facebook method)

 	(granary.flickr.Flickr method)

 	(granary.googleplus.GooglePlus method)

 	(granary.instagram.Instagram method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

 	user_url() (granary.flickr.Flickr method)

 	(granary.source.Source method)

 	(granary.twitter.Twitter method)

V

 	
 	vid() (in module granary.microformats2)

granary package

Reference documentation.

	granary package
	atom

	facebook

	flickr

	googleplus

	instagram

	microformats2

	source

	twitter

atom

Convert ActivityStreams to Atom.

Atom spec: http://atomenabled.org/developers/syndication/

	
granary.atom.activities_to_atom(activities, actor, title=None, request_url=None, host_url=None, xml_base=None, rels=None, reader=True)

	Converts ActivityStreams activities to an Atom feed.

	Parameters:	
	activities – list of ActivityStreams activity dicts

	actor – ActivityStreams actor dict, the author of the feed

	title – string, the feed <title> element. Defaults to ‘User feed for [NAME]’

	request_url – the URL of this Atom feed, if any. Used in a link rel=”self”.

	host_url – the home URL for this Atom feed, if any. Used in the top-level
feed <id> element.

	xml_base – the base URL, if any. Used in the top-level xml:base attribute.

	rels – rel links to include. dict mapping string rel value to string URL.

	reader – boolean, whether the output will be rendered in a feed reader.
Currently just includes location if True, not otherwise.

	Returns:	unicode string with Atom XML

	
granary.atom.activity_to_atom(activity, xml_base=None, reader=True)

	Converts a single ActivityStreams activity to an Atom entry.

Kwargs are passed through to activities_to_atom().

	Parameters:	
	xml_base – the base URL, if any. Used in the top-level xml:base attribute.

	reader – boolean, whether the output will be rendered in a feed reader.
Currently just includes location if True, not otherwise.

	Returns:	unicode string with Atom XML

	
granary.atom.html_to_atom(html, url=None, fetch_author=False, reader=True)

	Converts microformats2 HTML to an Atom feed.

	Parameters:	
	html – string

	url – string URL html came from, optional

	fetch_author – boolean, whether to make HTTP request to fetch rel-author link

	reader – boolean, whether the output will be rendered in a feed reader.
Currently just includes location if True, not otherwise.

	Returns:	unicode string with Atom XML

facebook

Facebook source class. Uses the Graph API.

https://developers.facebook.com/docs/graph-api/using-graph-api/

The Audience Targeting ‘to’ field is set to @public or @private based on whether
the Facebook object’s ‘privacy’ field is ‘EVERYONE’ or anything else.
https://developers.facebook.com/docs/reference/api/privacy-parameter/

Retrieving @all activities from get_activities() (the default) currently
returns an incomplete set of activities, ie NOT exactly the same set as your
Facebook News Feed: https://www.facebook.com/help/327131014036297/

	
class granary.facebook.FacebookId(user, post, comment)

	Bases: tuple

	
comment

	Alias for field number 2

	
post

	Alias for field number 1

	
user

	Alias for field number 0

	
class granary.facebook.Facebook(access_token=None, user_id=None)

	Bases: granary.source.Source

Facebook source class. See file docstring and Source class for details.

	
access_token

	string, optional, OAuth access token

	
user_id

	string, optional, current user’s id (either global or app-scoped)

	
__init__(access_token=None, user_id=None)

	Constructor.

If an OAuth access token is provided, it will be passed on to Facebook. This
will be necessary for some people and contact details, based on their
privacy settings.

	Parameters:	
	access_token – string, optional OAuth access token

	user_id – string, optional, current user’s id (either global or app-scoped)

	
get_actor(user_id=None)

	Returns a user as a JSON ActivityStreams actor dict.

	Parameters:	user_id – string id or username. Defaults to ‘me’, ie the current user.

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, fetch_news=False, event_owner_id=None, **kwargs)

	Fetches posts and converts them to ActivityStreams activities.

See method docstring in source.py for details.

Likes, top-level replies (ie comments), and reactions are always included.
They come from the ‘comments’, ‘likes’, and ‘reactions’ fields in the Graph
API’s Post object:
https://developers.facebook.com/docs/reference/api/post/

Threaded comments, ie comments in reply to other top-level comments, require
an additional API call, so they’re only included if fetch_replies is True.

Mentions are never fetched or included because the API doesn’t support
searching for them.
https://github.com/snarfed/bridgy/issues/523#issuecomment-155523875

	Additional args:

	
	fetch_news: boolean, whether to also fetch and include Open Graph news

	stories (/USER/news.publishes). Requires the user_actions.news
permission. Background in https://github.com/snarfed/bridgy/issues/479

	event_owner_id: string. if provided, only events owned by this user id

	will be returned. avoids (but doesn’t entirely prevent) processing big
non-indieweb events with tons of attendees that put us over app engine’s
instance memory limit. https://github.com/snarfed/bridgy/issues/77

	
get_event(event_id, owner_id=None)

	Returns a Facebook event post.

	Parameters:	
	id – string, site-specific event id

	owner_id – string

	Returns:	dict, decoded ActivityStreams activity, or None if the event is not
found or is owned by a different user than owner_id (if provided)

	
get_comment(comment_id, activity_id=None, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, optional

	activity_author_id – string activity author id, optional

	activity – activity object (optional)

	
get_share(activity_user_id, activity_id, share_id, activity=None)

	Returns an ActivityStreams share activity object.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	share_id – string id of the share object

	activity – activity object (optional)

	
get_albums(user_id=None)

	Fetches and returns a user’s photo albums.

	Parameters:	user_id – string id or username. Defaults to ‘me’, ie the current user.

	Returns:	sequence of ActivityStream album object dicts

	
get_reaction(activity_user_id, activity_id, reaction_user_id, reaction_id, activity=None)

	Fetches and returns a reaction.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	reaction_user_id – string id of the user who reacted

	reaction_id – string id of the reaction. one of:
‘love’, ‘wow’, ‘haha’, ‘sad’, ‘angry’

	activity – activity object (optional)

	
create(obj, include_link='omit', ignore_formatting=False)

	Creates a new post, comment, like, or RSVP.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose contents will be a dict with ‘id’ and
‘url’ keys for the newly created Facebook object (or None)

	
preview_create(obj, include_link='omit', ignore_formatting=False)

	Previews creating a new post, comment, like, or RSVP.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose contents will be a unicode string HTML snippet
or None

	
create_notification(user_id, text, link)

	Sends the authenticated user a notification.

Uses the Notifications API (beta):
https://developers.facebook.com/docs/games/notifications/#impl

	Parameters:	
	user_id – string, username or user ID

	text – string, shown to the user in the notification

	link – string URL, the user is redirected here when they click on the
notification

Raises: urllib2.HTPPError

	
post_url(post)

	Returns a short Facebook URL for a post.

	Parameters:	post – Facebook JSON post

	
comment_url(post_id, comment_id, post_author_id=None)

	Returns a short Facebook URL for a comment.

	Parameters:	
	post_id – Facebook post id

	comment_id – Facebook comment id

	
base_object(obj, verb=None, resolve_numeric_id=False)

	Returns the ‘base’ silo object that an object operates on.

This is mostly a big bag of heuristics for reverse engineering and
parsing Facebook URLs. Whee.

	Parameters:	
	obj – ActivityStreams object

	verb – string, optional

	resolve_numeric_id – if True, tries harder to populate the numeric_id field
by making an additional API call to look up the object if necessary.

	Returns:	dict, minimal ActivityStreams object. Usually has at least id,
numeric_id, and url fields; may also have author.

	
post_to_activity(post)

	Converts a post to an activity.

	Parameters:	post – dict, a decoded JSON post

	Returns:	an ActivityStreams activity dict, ready to be JSON-encoded

	
post_to_object(post, type=None)

	Converts a post to an object.

TODO: handle the sharedposts field

	Parameters:	
	post – dict, a decoded JSON post

	type – string object type: None, ‘post’, or ‘comment’

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
comment_to_object(comment, post_id=None, post_author_id=None)

	Converts a comment to an object.

	Parameters:	
	comment – dict, a decoded JSON comment

	post_id – optional string Facebook post id. Only used if the comment id
doesn’t have an embedded post id.

	post_author_id – optional string Facebook post author id. Only used if the
comment id doesn’t have an embedded post author id.

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
share_to_object(share)

	Converts a share (from /OBJECT/sharedposts) to an object.

	Parameters:	share – dict, a decoded JSON share

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
user_to_actor(user)

	Converts a user or page to an actor.

	Parameters:	user – dict, a decoded JSON Facebook user or page

	Returns:	an ActivityStreams actor dict, ready to be JSON-encoded

	
event_to_object(event, rsvps=None)

	Converts an event to an object.

	Parameters:	
	event – dict, a decoded JSON Facebook event

	rsvps – sequence, optional Facebook RSVPs

	Returns:	an ActivityStreams object dict

	
event_to_activity(event, rsvps=None)

	Converts a event to an activity.

	Parameters:	
	event – dict, a decoded JSON Facebook event

	rsvps – list of JSON Facebook RSVPs

	Returns:	an ActivityStreams activity dict

	
rsvp_to_object(rsvp, type=None, event=None)

	Converts an RSVP to an object.

The ‘id’ field will ony be filled in if event[‘id’] is provided.

	Parameters:	
	rsvp – dict, a decoded JSON Facebook RSVP

	type – optional Facebook RSVP type, one of RSVP_FIELDS

	event – Facebook event object. May contain only a single ‘id’ element.

	Returns:	an ActivityStreams object dict

	
album_to_object(album)

	Converts a photo album to an object.

	Parameters:	album – dict, a decoded JSON Facebook album

	Returns:	an ActivityStreams object dict

	
privacy_to_to(obj, type=None)

	Converts a Facebook privacy field to an ActivityStreams to field.

privacy is sometimes an object:
https://developers.facebook.com/docs/graph-api/reference/post#fields

...and other times a string:
https://developers.facebook.com/docs/graph-api/reference/album/#readfields

	Parameters:	obj – dict, Facebook object (post, album, comment, etc)

	Returns:	ActivityStreams to object, or None if unknown
type: string object type: None, ‘post’, or ‘comment’

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
fql_stream_to_post(stream, actor=None)

	Converts an FQL stream row to a Graph API post.

Currently unused and untested! Use at your own risk.

https://developers.facebook.com/docs/technical-guides/fql/
https://developers.facebook.com/docs/reference/fql/stream/

TODO: place, to, with_tags, message_tags, likes, comments, etc., most
require extra queries to inflate.

	Parameters:	
	stream – dict, a row from the FQL stream table

	actor – dict, a row from the FQL profile table

	Returns:	dict, Graph API post

Here’s example code to query FQL and pass the results to this method:

resp = self.urlopen('https://graph.facebook.com/v2.0/fql?' + urllib.urlencode(
 {'q': json.dumps({
 'stream': '''\
 SELECT actor_id, post_id, created_time, updated_time,
 attachment, privacy, message, description
 FROM stream
 WHERE filter_key IN (
 SELECT filter_key FROM stream_filter WHERE uid = me())
 ORDER BY created_time DESC
 LIMIT 50
 ''',
 'actors': '''\
 SELECT id, name, username, url, pic FROM profile WHERE id IN
 (SELECT actor_id FROM #stream)
 '''})}))

results = {q['name']: q['fql_result_set'] for q in resp['data']}
actors = {a['id']: a for a in results['actors']}
posts = [self.fql_stream_to_post(row, actor=actors[row['actor_id']])
 for row in results['stream']]

	
static parse_id(id, is_comment=False)

	Parses a Facebook post or comment id.

Facebook ids come in different formats:

	Simple number, usually a user or post: 12

	Two numbers with underscore, usually POST_COMMENT or USER_POST: 12_34

	Three numbers with underscores, USER_POST_COMMENT: 12_34_56

	Three numbers with colons, USER:POST:SHARD: 12:34:63
(We’re guessing that the third part is a shard in some FB internal system.
In our experience so far, it’s always either 63 or the app-scoped user id
for 63.)

	Two numbers with colon, POST:SHARD: 12:34
(We’ve seen 0 as shard in this format.)

	Four numbers with colons/underscore, USER:POST:SHARD_COMMENT: 12:34:63_56

	Five numbers with colons/underscore, USER:EVENT:UNKNOWN:UNKNOWN_UNKNOWN
Not currently supported! Examples:
111599105530674:998145346924699:10102446236688861:10207188792305341_998153510257216
111599105530674:195181727490727:10102446236688861:10205257726909910_195198790822354

Background:

	https://github.com/snarfed/bridgy/issues/305

	https://developers.facebook.com/bugs/786903278061433/

	Parameters:	
	id – string or integer

	is_comment – boolean

	Returns:	Some or all fields may be None.

	Return type:	FacebookId

	
resolve_object_id(user_id, post_id, activity=None)

	Resolve a post id to its Facebook object id, if any.

Used for photo posts, since Facebook has (at least) two different objects
(and ids) for them, one for the post and one for each photo.

This is the same logic that we do for canonicalizing photo objects in
get_activities() above.

If activity is not provided, fetches the post from Facebook.

	Parameters:	
	user_id – string Facebook user id who posted the post

	post_id – string Facebook post id

	activity – optional AS activity representation of Facebook post

	Returns:	Facebook object id or None

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
urlopen(url, _as=<type 'dict'>, **kwargs)

	Wraps urllib2.urlopen() [https://docs.python.org/2/library/urllib2.html#urllib2.urlopen] and passes through the access token.

	Parameters:	_as – if not None, parses the response as JSON and passes it through _as()
with this type. if None, returns the response object.

	Returns:	decoded JSON object or urlopen response object

	
urlopen_batch(urls)

	Sends a batch of multiple API calls using Facebook’s batch API.

Raises the appropriate urllib2.HTTPError [https://docs.python.org/2/library/urllib2.html#urllib2.HTTPError] if any individual call
returns HTTP status code 4xx or 5xx.

https://developers.facebook.com/docs/graph-api/making-multiple-requests

	Parameters:	urls – sequence of string relative API URLs, e.g. (‘me’, ‘me/accounts’)

	Returns:	sequence of responses, either decoded JSON objects (when possible)
or raw string bodies

	
urlopen_batch_full(requests)

	Sends a batch of multiple API calls using Facebook’s batch API.

Similar to urlopen_batch(), but the requests arg and return value are dicts
with headers, HTTP status code, etc. Only raises urllib2.HTTPError [https://docs.python.org/2/library/urllib2.html#urllib2.HTTPError]
if the outer batch request itself returns an HTTP error.

https://developers.facebook.com/docs/graph-api/making-multiple-requests

	Parameters:	requests – sequence of dict requests in Facebook’s batch format, except
that headers is a single dict, not a list of dicts, e.g.:

[{'relative_url': 'me/feed',
 'headers': {'ETag': 'xyz', ...},
 },
 ...
]

	Returns:	sequence of dict responses in Facebook’s batch format, except that body is
JSON-decoded if possible, and headers is a single dict, not a list of
dicts, e.g.:[{'code': 200,
 'headers': {'ETag': 'xyz', ...},
 'body': {...},
 },
 ...
]

flickr

Flickr source class.

Uses Flickr’s REST API https://www.flickr.com/services/api/

TODO: Fetching feeds with comments and/or favorites is very request
intensive right now. It would be ideal to find a way to batch
requests, make requests asynchronously, or make better calls to the
API itself. Maybe use flickr.activity.userPhotos
(https://www.flickr.com/services/api/flickr.activity.userPhotos.html)
when group_id=SELF.

	
class granary.flickr.Flickr(access_token_key, access_token_secret, user_id=None, path_alias=None)

	Bases: granary.source.Source

Flickr source class. See file docstring and Source class for details.

	
__init__(access_token_key, access_token_secret, user_id=None, path_alias=None)

	Constructor.

If they are not provided, user_id and path_alias will be looked up via the
API on first use.

	Parameters:	
	access_token_key – string, OAuth access token key

	access_token_secret – string, OAuth access token secret

	user_id – string, the logged in user’s Flickr nsid. (optional)

	path_alias – string, the logged in user’s path_alias, replaces user_id in
canonical profile and photo urls (optional)

	
call_api_method(method, params=None)

	Call a Flickr API method.

	
upload(params, file)

	Upload a photo or video via the Flickr API.

	
create(obj, include_link='omit', ignore_formatting=False)

	Creates a photo, comment, or favorite.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose content will be a dict with ‘id’, ‘url’,
and ‘type’ keys (all optional) for the newly created Flickr
object (or None)

	
preview_create(obj, include_link='omit', ignore_formatting=False)

	Preview creation of a photo, comment, or favorite.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose description will be an HTML summary of
what publishing will do, and whose content will be an HTML preview
of the result (or None)

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, **kwargs)

	Fetches Flickr photos and converts them to ActivityStreams activities.

See method docstring in source.py for details.

Mentions are not fetched or included because they don’t exist in Flickr.
https://github.com/snarfed/bridgy/issues/523#issuecomment-155523875

	
get_actor(user_id=None)

	Get an ActivityStreams object of type ‘person’ given a Flickr user’s nsid.
If no user_id is provided, this method will make another API request to
find out the currently logged in user’s id.

	Parameters:	user_id – string, optional

	Returns:	dict, an ActivityStreams object

	
user_to_actor(resp)

	Convert a Flickr user dict into an ActivityStreams actor.

	
get_comment(comment_id, activity_id, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, required

	activity_author_id – string activity author id, ignored

	activity – activity object (optional)

	
photo_to_activity(photo)

	Convert a Flickr photo to an ActivityStreams object. Takes either
data in the expanded form returned by flickr.photos.getInfo or the
abbreviated form returned by flickr.people.getPhotos.

	Parameters:	photo – dict response from Flickr

	Returns:	dict, an ActivityStreams object

	
like_to_object(person, photo_activity)

	Convert a Flickr favorite into an ActivityStreams like tag.

	Parameters:	
	person – dict, the person object from Flickr

	photo_activity – dict, the ActivityStreams object representing
the photo this like belongs to

	Returns:	dict, an ActivityStreams object

	
comment_to_object(comment, photo_id)

	Convert a Flickr comment json object to an ActivityStreams comment.

	Parameters:	
	comment – dict, the comment object from Flickr

	photo_id – string, the Flickr ID of the photo that this comment belongs to

	Returns:	dict, an ActivityStreams object

	
get_user_image(farm, server, author)

	Convert fields from a typical Flickr response into the buddy icon
URL.

ref: https://www.flickr.com/services/api/misc.buddyicons.html

	
user_id()

	Get the nsid of the currently authorized user. The first time this
is called, it will invoke the flickr.people.getLimits api method.

https://www.flickr.com/services/api/flickr.people.getLimits.html

	Returns:	a string

	
path_alias()

	Get the path_alias of the currently authorized user. The first time this
is called, it will invoke the flickr.people.getInfo api method.

https://www.flickr.com/services/api/flickr.people.getInfo.html

	Returns:	a string

	
user_url(user_id)

	Convert a user’s path_alias to their Flickr profile page URL.

	Parameters:	user_id (string [https://docs.python.org/2/library/string.html#module-string]) – user’s alphanumeric nsid or path alias

	Returns:	string, a profile URL

	
photo_url(user_id, photo_id)

	Construct a url for a photo given user id and the photo id
:param user_id: alphanumeric user ID or path alias
:type user_id: string
:param photo_id: numeric photo ID
:type photo_id: string

	Returns:	string, the photo URL

	
classmethod base_id(url)

	Used when publishing comments or favorites. Flickr photo ID is the
3rd path component rather than the first.

googleplus

Google+ source class.

The Google+ API currently only returns public activities and comments, so the
Audience Targeting ‘to’ field is always set to @public.
https://developers.google.com/+/api/latest/activities/list#collection

	
class granary.googleplus.GooglePlus(auth_entity=None, access_token=None)

	Bases: granary.source.Source

Google+ source class. See file docstring and Source class for details.

The Google+ API already exposes data in ActivityStreams format, so this is
mostly just a pass through.

	
__init__(auth_entity=None, access_token=None)

	Constructor.

Currently, only auth_entity is supported. TODO: implement access_token.

	Parameters:	
	access_token – string OAuth access token

	auth_entity – oauth-dropins.googleplus.GooglePlusAuth

	
get_actor(user_id=None)

	Returns a user as a JSON ActivityStreams actor dict.

	Parameters:	user_id – string id or username. Defaults to ‘me’, ie the current user.

Raises: GooglePlusAPIError

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, **kwargs)

	Fetches posts and converts them to ActivityStreams activities.

See method docstring in source.py for details. app_id is ignored.

Replies (comments), likes (+1s), and shares (reshares) each need an extra
API call per activity. The activity has total counts for them, though, so we
only make those calls when we know there’s something to fetch.
https://developers.google.com/+/api/latest/comments/list
https://developers.google.com/+/api/latest/people/listByActivity

We also batch those calls into a single HTTP request, so there are at most
two HTTP requests total, one to get activities and optionally one to get new
responses.
https://developers.google.com/api-client-library/python/guide/batch

Mentions are not currently fetched or included because the API doesn’t
explicitly support searching for them. It could be approximated, though:
https://github.com/snarfed/bridgy/issues/523#issuecomment-155523875

	
get_comment(comment_id, activity_id=None, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, optional

	activity_author_id – string activity author id. Ignored.

	activity – activity object (optional)

	
postprocess_activity(activity)

	Massage G+’s ActivityStreams dialect into our dialect, in place.

	Parameters:	activity – ActivityStreams activity dict.

	
postprocess_comment(comment)

	Hack to pretend comment activities are comment objects.

G+ puts almost everything in the comment activity, not the object
inside the activity. So, copy over the content and use the activity
itself.

	
postprocess_actor(actor)

	Massage G+’s ActivityStreams dialect into our dialect, in place.

	Parameters:	actor – ActivityStreams actor dict.

	
user_to_actor(actor)

	Massage G+’s ActivityStreams dialect into our dialect, in place.

	Parameters:	actor – ActivityStreams actor dict.

	
maybe_add_tags(batch, activity, cached, cache_updates, collection, verb)

	Fetches and adds ‘like’ or ‘share’ tags to an activity.

Just adds a request and callback to the batch. Does not execute the batch.

Converts +1s to like and reshares to share activity objects, and stores them
in place in the ‘tags’ field of the activity’s object.
Details: https://developers.google.com/+/api/latest/people/listByActivity

	Parameters:	
	batch – BatchHttpRequest

	activity – dict, G+ activity that was +1ed or reshared

	cached – dict of cache values. (not cache object above.)

	cache_updates – dict, values to write back to cache

	collection – string, ‘plusoners’ or ‘resharers’

	verb – string, ActivityStreams verb to populate the tags with

	
html_to_activities(html)

	Converts HTML from https://plus.google.com/ to ActivityStreams activities.

	Parameters:	html – unicode string

	Returns:	list of ActivityStreams activity dicts

instagram

Instagram source class.

Instagram’s API doesn’t tell you if a user has marked their account private or
not, so the Audience Targeting ‘to’ field is currently always set to @public.
http://help.instagram.com/448523408565555
https://groups.google.com/forum/m/#!topic/instagram-api-developers/DAO7OriVFsw
https://groups.google.com/forum/#!searchin/instagram-api-developers/private

	
class granary.instagram.Instagram(access_token=None, allow_comment_creation=False, scrape=False)

	Bases: granary.source.Source

Instagram source class. See file docstring and Source class for details.

	
__init__(access_token=None, allow_comment_creation=False, scrape=False)

	Constructor.

If an OAuth access token is provided, it will be passed on to Instagram.
This will be necessary for some people and contact details, based on their
privacy settings.

	Parameters:	
	access_token – string, optional OAuth access token

	allow_comment_creation – boolean, optionally disable comment creation,
useful if the app is not approved to create comments.

	scrape – boolean, whether to scrape instagram.com’s HTML (True) or use

	API (the) –

	
urlopen(url, **kwargs)

	Wraps urllib2.urlopen() [https://docs.python.org/2/library/urllib2.html#urllib2.urlopen] and passes through the access token.

	
get_actor(user_id=None)

	Returns a user as a JSON ActivityStreams actor dict.

	Parameters:	user_id – string id or username. Defaults to ‘self’, ie the current user.

Raises: InstagramAPIError

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, scrape=False, cookie=None, **kwargs)

	Fetches posts and converts them to ActivityStreams activities.

See method docstring in source.py for details. app_id is ignored.
Supports min_id, but not ETag, since Instagram doesn’t support it.

http://instagram.com/developer/endpoints/users/#get_users_feed
http://instagram.com/developer/endpoints/users/#get_users_media_recent

Likes are always included, regardless of the fetch_likes kwarg. They come
bundled in the ‘likes’ field of the API Media object:
http://instagram.com/developer/endpoints/media/#

Mentions are never fetched or included because the API doesn’t support
searching for them.
https://github.com/snarfed/bridgy/issues/523#issuecomment-155523875

Shares are never fetched included since there is no share feature.

Instagram only supports search over hashtags, so if search_query is set, it
must begin with #.

May populate a custom ‘ig_like_count’ property in media objects. (Currently
only when scraping.)

	Parameters:	
	scrape – if True, scrapes HTML from instagram.com instead of using the API.
Populates the user’s actor object in the ‘actor’ response field.
Useful for apps that haven’t yet been approved in the new permissions
approval process. Currently only supports group_id=SELF. Also supports
passing a shortcode as activity_id as well as the internal API id.
http://developers.instagram.com/post/133424514006/instagram-platform-update

	cookie – string, only used if scrape=True

	** – see Source.get_activities_reponse()

	Raises:	InstagramAPIError

	
get_comment(comment_id, activity_id=None, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, required

	activity_author_id – string activity author id. Ignored.

	activity – activity object, optional. Avoids fetching the activity.

	
get_share(activity_user_id, activity_id, share_id, activity=None)

	Not implemented. Returns None. Resharing isn’t a feature of Instagram.

	
create(obj, include_link='omit', ignore_formatting=False)

	Creates a new comment or like.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	
	a CreationResult. if successful, content will have and ‘id’ and

	‘url’ keys for the newly created Instagram object

	
preview_create(obj, include_link='omit', ignore_formatting=False)

	Preview a new comment or like.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	
	a CreationResult. if successful, content and description

	will describe the new instagram object.

	
media_to_activity(media)

	Converts a media to an activity.

http://instagram.com/developer/endpoints/media/#get_media

	Parameters:	media – JSON object retrieved from the Instagram API

	Returns:	an ActivityStreams activity dict, ready to be JSON-encoded

	
media_to_object(media)

	Converts a media to an object.

	Parameters:	media – JSON object retrieved from the Instagram API

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
comment_to_object(comment, media_id, media_url)

	Converts a comment to an object.

	Parameters:	
	comment – JSON object retrieved from the Instagram API

	media_id – string

	media_url – string

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
like_to_object(liker, media_id, media_url)

	Converts a like to an object.

	Parameters:	
	liker – JSON object from the Instagram API, the user who does the liking

	media_id – string

	media_url – string

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
user_to_actor(user)

	Converts a user to an actor.

	Parameters:	user – JSON object from the Instagram API

	Returns:	an ActivityStreams actor dict, ready to be JSON-encoded

	
base_object(obj)

	Extends the default base_object() to avoid using shortcodes as object ids.

	
static id_to_shortcode(id)

	Converts a media id to the shortcode used in its instagram.com URL.

Based on http://carrot.is/coding/instagram-ids , which determined that
shortcodes are just URL-safe base64 encoded ids.

	
html_to_activities(html)

	Converts Instagram HTML to ActivityStreams activities.

The input HTML may be from:

	a user’s feed, eg https://www.instagram.com/ while logged in

	a user’s profile, eg https://www.instagram.com/snarfed/

	a photo or video, eg https://www.instagram.com/p/BBWCSrfFZAk/

	Parameters:	html – unicode string

	Returns:	tuple, ([ActivityStreams activities], ActivityStreams viewer actor)

microformats2

Convert ActivityStreams to microformats2 HTML and JSON.

Microformats2 specs: http://microformats.org/wiki/microformats2

	
granary.microformats2.get_string_urls(objs)

	Extracts string URLs from a list of either string URLs or mf2 dicts.

Many mf2 properties can contain either string URLs or full mf2 objects, e.g.
h-cites. in-reply-to is the most commonly used example:
http://indiewebcamp.com/in-reply-to#How_to_consume_in-reply-to

	Parameters:	objs – sequence of either string URLs or embedded mf2 objects

	Returns:	list of string URLs

	
granary.microformats2.get_html(val, keep_newlines=False)

	Returns a string value that may have HTML markup.

	Parameters:	value – mf2 property value, either string or
{‘html’: ‘<p>str</p>’, ‘value’: ‘str’} dict

	Returns:	string or None

	
granary.microformats2.get_text(val)

	Returns a plain text string value. See get_html.

	
granary.microformats2.activity_to_json(activity, **kwargs)

	Converts an ActivityStreams activity to microformats2 JSON.

	Parameters:	
	activity – dict, a decoded JSON ActivityStreams activity

	kwargs – passed to object_to_json

	Returns:	dict, decoded microformats2 JSON

	
granary.microformats2.object_to_json(obj, trim_nulls=True, entry_class='h-entry', default_object_type=None, synthesize_content=True)

	Converts an ActivityStreams object to microformats2 JSON.

	Parameters:	
	obj – dict, a decoded JSON ActivityStreams object

	trim_nulls – boolean, whether to remove elements with null or empty values

	entry_class – string or sequence, the mf2 class(es) that entries should be
given (e.g. ‘h-cite’ when parsing a reference to a foreign entry).
defaults to ‘h-entry’

	default_object_type – string, the ActivityStreams objectType to use if one
is not present. defaults to None

	synthesize_content – whether to generate synthetic content if the object
doesn’t have its own, e.g. ‘likes this.’ or ‘shared this.’

	Returns:	dict, decoded microformats2 JSON

	
granary.microformats2.json_to_object(mf2, actor=None)

	Converts microformats2 JSON to an ActivityStreams object.

	Parameters:	
	mf2 – dict, decoded JSON microformats2 object

	actor – optional author AS actor object. usually comes from a rel=”author”
link. if mf2 has its own author, that will override this.

	Returns:	dict, ActivityStreams object

	
granary.microformats2.html_to_activities(html, url=None, actor=None)

	Converts a microformats2 HTML h-feed to ActivityStreams activities.

	Parameters:	
	html – string HTML

	url – optional string URL that HTML came from

	actor – optional author AS actor object for all activities. usually comes
from a rel=”author” link.

	Returns:	list of ActivityStreams activity dicts

	
granary.microformats2.activities_to_html(activities)

	Converts ActivityStreams activities to a microformats2 HTML h-feed.

	Parameters:	obj – dict, a decoded JSON ActivityStreams object

	Returns:	string, the content field in obj with the tags in the tags field
converted to links if they have startIndex and length, otherwise added to
the end.

	
granary.microformats2.object_to_html(obj, parent_props=None, synthesize_content=True)

	Converts an ActivityStreams object to microformats2 HTML.

Features:

	linkifies embedded tags and adds links for other tags

	linkifies embedded URLs

	adds links, summaries, and thumbnails for attachments and checkins

	adds a “via SOURCE” postscript

	Parameters:	
	obj – dict, a decoded JSON ActivityStreams object

	parent_props – list of strings, the properties of the parent object where
this object is embedded, e.g. [‘u-repost-of’]

	synthesize_content – whether to generate synthetic content if the object
doesn’t have its own, e.g. ‘likes this.’ or ‘shared this.’

	Returns:	string, the content field in obj with the tags in the tags field
converted to links if they have startIndex and length, otherwise added to
the end.

	
granary.microformats2.json_to_html(obj, parent_props=None)

	Converts a microformats2 JSON object to microformats2 HTML.

See object_to_html for details.

	Parameters:	
	obj – dict, a decoded microformats2 JSON object

	parent_props – list of strings, the properties of the parent object where
this object is embedded, e.g. ‘u-repost-of’

	Returns:	string HTML

	
granary.microformats2.hcard_to_html(hcard, parent_props=None)

	Renders an h-card as HTML.

	Parameters:	
	hcard – dict, decoded JSON h-card

	parent_props – list of strings, the properties of the parent object where
this object is embedded, e.g. [‘p-author’]

	Returns:	string, rendered HTML

	
granary.microformats2.render_content(obj, include_location=True, synthesize_content=True)

	Renders the content of an ActivityStreams object.

Includes tags, mentions, and non-note/article attachments. (Note/article
attachments are converted to mf2 children in object_to_json and then rendered
in json_to_html.)

	Parameters:	
	obj – decoded JSON ActivityStreams object

	include_location – whether to render location, if provided

	synthesize_content – whether to generate synthetic content if the object
doesn’t have its own, e.g. ‘likes this.’ or ‘shared this.’

	Returns:	string, rendered HTML

	
granary.microformats2.find_author(parsed, **kwargs)

	Returns the author of a page as a ActivityStreams actor dict.

	Parameters:	
	parsed – return value from mf2py.parse()

	kwargs – passed through to mf2util.find_author()

	
granary.microformats2.first_props(props)

	Converts a multiply-valued dict to singly valued.

	Parameters:	props – dict of properties, where each value is a sequence

	Returns:	corresponding dict with just the first value of each sequence, or ‘’
if the sequence is empty

	
granary.microformats2.tags_to_html(tags, classname)

	Returns an HTML string with links to the given tag objects.

	Parameters:	
	tags – decoded JSON ActivityStreams objects.

	classname – class for span to enclose tags in

	
granary.microformats2.object_urls(obj)

	Returns an object’s unique URLs, preserving order.

	
granary.microformats2.author_display_name(hcard)

	Returns a human-readable string display name for an h-card object.

	
granary.microformats2.maybe_linked_name(props)

	Returns the HTML for a p-name with an optional u-url inside.

	Parameters:	props – multiply-valued properties dict

	Returns:	string HTML

	
granary.microformats2.img(src, cls='', alt='')

	Returns an string with the given src, class, and alt.

	Parameters:	
	src – string, url of the image

	cls – string, css class applied to the img tag

	alt – string, alt attribute value, or None

	Returns:	string

	
granary.microformats2.vid(src, poster, cls)

	Returns an <video> string with the given src and class

	Parameters:	
	src – string, url of the video

	poster – sring, optional. url of the poster or preview image

	cls – string, css class applied to the video tag

	Returns:	string

	
granary.microformats2.maybe_linked(text, url, linked_classname=None, unlinked_classname=None)

	Wraps text in an iff a non-empty url is provided.

	Parameters:	
	text – string

	url – string or None

	linked_classname – string, optional class attribute to use if url

	unlinked_classname – string, optional class attribute to use if not url

	Returns:	string

	
granary.microformats2.maybe_datetime(str, classname)

	Returns a <time datetime=...> elem if str is non-empty.

	Parameters:	
	str – string RFC339 datetime or None

	classname – string class name

	Returns:	string

source

Source base class.

Based on the OpenSocial ActivityStreams REST API:
http://opensocial-resources.googlecode.com/svn/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service

Uses the ‘to’ field of the Audience Targeting extension to indicate an
activity’s privacy settings. It’s set to a group with alias @public or @private,
or unset if unknown.
http://activitystrea.ms/specs/json/targeting/1.0/#anchor3

	
class granary.source.CreationResult(content, description, abort, error_plain, error_html)

	Bases: tuple

	
abort

	Alias for field number 2

	
content

	Alias for field number 0

	
description

	Alias for field number 1

	
error_html

	Alias for field number 4

	
error_plain

	Alias for field number 3

	
exception granary.source.RateLimited(*args, **kwargs)

	Bases: exceptions.BaseException [https://docs.python.org/2/library/exceptions.html#exceptions.BaseException]

Raised when an API rate limits us, and we may have a partial result.

	
partial

	the partial result, if any. Usually a list.

	
__weakref__

	list of weak references to the object (if defined)

	
granary.source.html_to_text(html)

	Converts string html to string text with html2text.

	
granary.source.load_json(body, url)

	Utility method to parse a JSON string. Raises HTTPError 502 on failure.

	
granary.source.creation_result(content=None, description=None, abort=False, error_plain=None, error_html=None)

	Create a new CreationResult.

create() and preview_create() use this to provide a detailed
description of publishing failures. If abort is False, we should continue
looking for an entry to publish; if True, we should immediately inform the
user. error_plain text is sent in response to failed publish webmentions;
error_html will be displayed to the user when publishing interactively.

	Parameters:	
	content – a string HTML snippet for preview_create() or a dict for
create()

	description – string HTML snippet describing the publish action, e.g.
'@-reply‘ or ‘RSVP yes to this event’. The verb itself is surrounded by a
 to allow styling. May also include <a> link(s) and
embedded silo post(s).

	abort – a boolean

	error_plain – a string

	error_html – a string

	Returns:	a CreationResult

	
granary.source.object_type(obj)

	Returns the object type, or the verb if it’s an activity object.

Details: http://activitystrea.ms/specs/json/1.0/#activity-object

	Parameters:	obj – decoded JSON ActivityStreams object

	Returns:	ActivityStreams object type

	Return type:	string [https://docs.python.org/2/library/string.html#module-string]

	
class granary.source.SourceMeta

	Bases: type [https://docs.python.org/2/library/functions.html#type]

Source metaclass. Registers all source classes in the sources global.

	
class granary.source.Source

	Bases: object [https://docs.python.org/2/library/functions.html#object]

Abstract base class for a source (e.g. Facebook, Twitter).

Concrete subclasses must override the class constants below and implement
get_activities().

Class constants:

	DOMAIN: string, the source’s domain

	BASE_URL: optional, the source’s base url

	NAME: string, the source’s human-readable name

	FRONT_PAGE_TEMPLATE: string, the front page child template filename

	AUTH_URL: string, the url for the “Authenticate” front page link

	EMBED_POST: string, the HTML for embedding a post. Should have a %(url)s
placeholder for the post URL and (optionally) a %(content)s placeholder
for the post content.

	POST_ID_RE: regexp, optional, matches valid post ids. Used in post_id().

	
__metaclass__

	alias of SourceMeta

	
user_url(user_id)

	Returns the URL for a user’s profile.

	
get_actor(user_id=None)

	Returns the current user as a JSON ActivityStreams actor dict.

	
get_activities(*args, **kwargs)

	Fetches and returns a list of ActivityStreams activities.

See get_activities_response() for args and kwargs.

	Returns:	list, ActivityStreams activity dicts

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, **kwargs)

	Fetches and returns ActivityStreams activities and response details.

Subclasses should override this. See get_activities() for an
alternative that just returns the list of activities.

If user_id is provided, only that user’s activity(s) are included.
start_index and count determine paging, as described in the spec:
http://activitystrea.ms/draft-spec.html#anchor14

app id is just object id:
http://opensocial-resources.googlecode.com/svn/spec/2.0/Social-Data.xml#appId

group id is string id of group or @self, @friends, @all, @search:
http://opensocial-resources.googlecode.com/svn/spec/2.0/Social-Data.xml#Group-ID

The fetch_* kwargs all default to False because they often require extra API
round trips. Some sources return replies, likes, and shares in the same
initial call, so they may be included even if you don’t set their kwarg to
True.

	Parameters:	
	user_id – string, defaults to the currently authenticated user

	group_id – string, one of '@self‘, '@all‘, '@friends‘, '@search‘. defaults
to '@friends‘

	app_id – string

	activity_id – string

	start_index – int >= 0

	count – int >= 0

	etag – string, optional ETag to send with the API request. Results will
only be returned if the ETag has changed. Should include enclosing
double quotes, e.g. ‘“ABC123”’

	min_id – only return activities with ids greater than this

	cache – object with get(key), set_multi(dict), and delete_multi(list)
methods. In practice, this is App Engine’s memcache interface:
https://developers.google.com/appengine/docs/python/memcache/functions
Used to cache data that’s expensive to regenerate, e.g. API calls.

	fetch_replies – boolean, whether to fetch each activity’s replies also

	fetch_likes – boolean, whether to fetch each activity’s likes also

	fetch_shares – boolean, whether to fetch each activity’s shares also

	fetch_events – boolean, whether to fetch the user’s events also

	fetch_mentions – boolean, whether to fetch posts that mention the user

	search_query – string, an optional search query, only for use with
@search group_id

	kwargs – some sources accept extra kwargs. See their docs for details.

	Returns:	
	response values based on OpenSocial ActivityStreams REST API.

	http://opensocial-resources.googlecode.com/svn/spec/2.0.1/Social-API-Server.xml#ActivityStreams-Service
http://opensocial-resources.googlecode.com/svn/spec/2.0.1/Core-Data.xml

It has these keys:
* items: list of activity dicts
* startIndex: int or None
* itemsPerPage: int
* totalResults: int or None (e.g. if it can ‘t be calculated efficiently)
* filtered: False
* sorted: False
* updatedSince: False
* etag: string etag returned by the API’s initial call to get activities

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	Raises:	
	ValueError – if any argument is invalid for this source

	NotImplementedError – if the source doesn’t support the requested
operation, e.g. Facebook doesn’t support search.

	
classmethod make_activities_base_response(activities, *args, **kwargs)

	Generates a base response dict for get_activities_response().

See get_activities() for args and kwargs.

	
create(obj, include_link='omit', ignore_formatting=False)

	Creates a new object: a post, comment, like, share, or RSVP.

Subclasses should override this. Different sites will support different
functionality; check each subclass for details. The actor will usually be
the authenticated user.

	Parameters:	
	obj – ActivityStreams object. At minimum, must have the content field.
objectType is strongly recommended.

	include_link – string. ‘include’, ‘omit’, or ‘if truncated’; whether to
include a link to the object (if it has one) in the content.

	ignore_formatting – whether to use content text as is, instead of
converting its HTML to plain text styling (newlines, etc.)

	Returns:	
	contents will be a dict. The dict may be None or empty. If

	the newly created object has an id or permalink, they’ll be provided in
the values for ‘id’ and ‘url’.

	Return type:	CreationResult

	
preview_create(obj, include_link='omit', ignore_formatting=False)

	Previews creating a new object: a post, comment, like, share, or RSVP.

Returns HTML that previews what create() with the same object will
do.

Subclasses should override this. Different sites will support different
functionality; check each subclass for details. The actor will usually be
the authenticated user.

	Parameters:	
	obj – ActivityStreams object. At minimum, must have the content field.
objectType is strongly recommended.

	include_link – string. Whether to include a link to the object
(if it has one) in the content.

	ignore_formatting – whether to use content text as is, instead of
converting its HTML to plain text styling (newlines, etc.)

	Returns:	contents will be a unicode string HTML snippet (or None)

	Return type:	CreationResult

	
get_event(event_id)

	Returns a ActivityStreams event activity.

	Parameters:	id – string, site-specific event id

	Returns:	decoded ActivityStreams activity, or None

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
get_comment(comment_id, activity_id=None, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

Subclasses should override this.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, optional

	activity_author_id – string activity author id, optional. Needed for some
sources (e.g. Facebook) to construct the comment permalink.

	activity – activity object, optional. May avoid an API call if provided.

	Raises:	ValueError – if any argument is invalid for this source

	
get_like(activity_user_id, activity_id, like_user_id, activity=None)

	Returns an ActivityStreams ‘like’ activity object.

Default implementation that fetches the activity and its likes, then
searches for a like by the given user. Subclasses should override this if
they can optimize the process.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	like_user_id – string id of the user who liked the activity

	activity – activity object, optional. May avoid an API call if provided.

	
get_reaction(activity_user_id, activity_id, reaction_user_id, reaction_id, activity=None)

	Returns an ActivityStreams ‘reaction’ activity object.

Default implementation that fetches the activity and its reactions, then
searches for this specific reaction. Subclasses should override this if they
can optimize the process.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	reaction_user_id – string id of the user who reacted

	reaction_id – string id of the reaction

	activity – activity object, optional. May avoid an API call if provided.

	
get_share(activity_user_id, activity_id, share_id, activity=None)

	Returns an ActivityStreams ‘share’ activity object.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	share_id – string id of the share object or the user who shared it

	activity – activity object, optional. May avoid an API call if provided.

	
get_rsvp(activity_user_id, event_id, user_id, event=None)

	Returns an ActivityStreams RSVP activity object.

	Parameters:	
	activity_user_id – string id of the user who posted the event. unused.

	event_id – string event id

	user_id – string user id

	event – AS event activity (optional)

	
get_blocklist()

	Returns the current user’s block list.

...ie the users that the current user is blocking. The exact semantics of
“blocking” vary from silo to silo.

	Returns:	sequence of actor objects

	
user_to_actor(user)

	Converts a user to an actor.

The returned object will have at least a ‘url’ field. If the user has
multiple URLs, there will also be a ‘urls’ list field whose elements are
dicts with ‘value’: URL.

	Parameters:	user – dict, a decoded JSON silo user object

	Returns:	ActivityStreams actor, ready to be JSON-encoded

	Return type:	dict [https://docs.python.org/2/library/stdtypes.html#dict]

	
postprocess_activity(activity)

	Does source-independent post-processing of an activity, in place.

Right now just populates the title field.

	Parameters:	activity – activity dict

	
static postprocess_object(obj)

	Does source-independent post-processing of an object, in place.

Populates location.position based on latitude and longitude.

	Parameters:	object – object dict

	
static original_post_discovery(activity, domains=None, cache=None, include_redirect_sources=True, **kwargs)

	Discovers original post links.

This is a variation on http://indiewebcamp.com/original-post-discovery . It
differs in that it finds multiple candidate links instead of one, and it
doesn’t bother looking for MF2 (etc) markup because the silos don’t let you
input it. More background:
https://github.com/snarfed/bridgy/issues/51#issuecomment-136018857

Original post candidates come from the upstreamDuplicates, attachments, and
tags fields, as well as links and permashortlinks/permashortcitations in the
text content.

	Parameters:	
	activity – activity dict

	domains – optional sequence of domains. If provided, only links to these
domains will be considered original and stored in upstreamDuplicates.
(Permashortcitations are exempt.)

	cache – optional, a cache object for storing resolved URL redirects. Passed
to follow_redirects().

	include_redirect_sources – boolean, whether to include URLs that redirect
as well as their final destination URLs

	kwargs – passed to requests.head() when following redirects

	Returns:	([string original post URLs], [string mention URLs]) tuple

	
static actor_name(actor)

	Returns the given actor’s name if available, otherwise Unknown.

	
static is_public(obj)

	Returns True if the object is public, False if private, None if unknown.

...according to the Audience Targeting extension
https://developers.google.com/+/api/latest/activities/list#collection

Expects values generated by this library: objectType group, alias @public or
@private.

Also, important point: this defaults to true, ie public. Bridgy depends on
that and prunes the to field from stored activities in Response objects (in
bridgy/util.prune_activity()). If the default here ever changes, be sure to
update Bridgy’s code.

	
static add_rsvps_to_event(event, rsvps)

	Adds RSVP objects to an event’s attending fields, in place.

	Parameters:	
	event – ActivityStreams event object

	rsvps – sequence of ActivityStreams RSVP activity objects

	
static get_rsvps_from_event(event)

	Returns RSVP objects for an event’s attending fields.

	Parameters:	event – ActivityStreams event object

	Returns:	sequence of ActivityStreams RSVP activity objects

	
static activity_changed(before, after, log=False)

	Returns whether two activities or objects differ meaningfully.

Only compares a few fields: object type, verb, content, location, and image.
Notably does not compare author and published/updated timestamps.

This has been tested on Facebook posts, comments, and event RSVPs (only
content and rsvp_status change) and Google+ posts and comments (content,
updated, and etag change). Twitter tweets and Instagram photo captions and
comments can’t be edited.

	Parameters:	after (before,) – dicts, ActivityStreams activities or objects

	Returns:	boolean

	
classmethod embed_post(obj)

	Returns the HTML string for embedding a post object.

	
classmethod embed_actor(actor)

	Returns the HTML string for embedding an actor object.

	
tag_uri(name)

	Returns a tag URI string for this source and the given string name.

	
base_object(obj)

	Returns the ‘base’ silo object that an object operates on.

For example, if the object is a comment, this returns the post that it’s a
comment on. If it’s an RSVP, this returns the event. The id in the returned
object is silo-specific, ie not a tag URI.

Subclasses may override this.

	Parameters:	obj – ActivityStreams object

	Returns:	dict, minimal ActivityStreams object. Usually has at least id; may
also have url, author, etc.

	
classmethod base_id(url)

	Guesses the id of the object in the given URL.

	Returns:	string, or None

	
classmethod post_id(url)

	Guesses the post id of the given URL.

	Returns:	string, or None

	
__weakref__

	list of weak references to the object (if defined)

twitter

Twitter source class.

Uses the v1.1 REST API: https://dev.twitter.com/docs/api

TODO: collections for twitter accounts; use as activity target?

The Audience Targeting ‘to’ field is set to @public or @private based on whether
the tweet author’s ‘protected’ field is true or false.
https://dev.twitter.com/docs/platform-objects/users

	
class granary.twitter.OffsetTzinfo(utc_offset=0)

	Bases: datetime.tzinfo [https://docs.python.org/2/library/datetime.html#datetime.tzinfo]

A simple, DST-unaware tzinfo from given utc offset in seconds.

	
__init__(utc_offset=0)

	Constructor.

	Parameters:	utc_offset – Offset of time zone from UTC in seconds

	
__weakref__

	list of weak references to the object (if defined)

	
class granary.twitter.Twitter(access_token_key, access_token_secret, username=None)

	Bases: granary.source.Source

Twitter source class. See file docstring and Source class for details.

	
__init__(access_token_key, access_token_secret, username=None)

	Constructor.

Twitter now requires authentication in v1.1 of their API. You can get an
OAuth access token by creating an app here: https://dev.twitter.com/apps/new

	Parameters:	
	access_token_key – string, OAuth access token key

	access_token_secret – string, OAuth access token secret

	username – string, optional, the current user. Used in e.g. preview/create.

	
get_actor(screen_name=None)

	Returns a user as a JSON ActivityStreams actor dict.

	Parameters:	screen_name – string username. Defaults to the current user.

	
get_activities_response(user_id=None, group_id=None, app_id=None, activity_id=None, start_index=0, count=0, etag=None, min_id=None, cache=None, fetch_replies=False, fetch_likes=False, fetch_shares=False, fetch_events=False, fetch_mentions=False, search_query=None, **kwargs)

	Fetches posts and converts them to ActivityStreams activities.

XXX HACK: this is currently hacked for bridgy to NOT pass min_id to the
request for fetching activity tweets themselves, but to pass it to all of
the requests for filling in replies, retweets, etc. That’s because we want
to find new replies and retweets of older initial tweets.
TODO: find a better way.

See source.Source.get_activities_response() for details. app_id is
ignored. min_id is translated to Twitter’s since_id.

The code for handling ETags (and 304 Not Changed responses and setting
If-None-Match) is here, but unused right now since Twitter evidently doesn’t
support ETags. From https://dev.twitter.com/discussions/5800 :
“I’ve confirmed with our team that we’re not explicitly supporting this
family of features.”

Likes (ie favorites) are scraped from twitter.com HTML, since Twitter’s REST
API doesn’t offer a way to fetch them. You can also get them from the
Streaming API, though, and convert them with streaming_event_to_object().
https://dev.twitter.com/docs/streaming-apis/messages#Events_event

Shares (ie retweets) are fetched with a separate API call per tweet:
https://dev.twitter.com/docs/api/1.1/get/statuses/retweets/%3Aid

However, retweets are only fetched for the first 15 tweets that have them,
since that’s Twitter’s rate limit per 15 minute window. :(
https://dev.twitter.com/docs/rate-limiting/1.1/limits

Quote tweets are fetched by searching for the possibly quoted tweet’s ID,
using the OR operator to search up to 5 IDs at a time, and then checking
the quoted_status_id_str field
https://dev.twitter.com/overview/api/tweets#quoted_status_id_str

Use the group_id @self to retrieve a user_id’s timeline. If user_id is None
or @me, it will return tweets for the current API user.

group_id can be used to specify the slug of a list for which to return tweets.
By default the current API user’s lists will be used, but lists owned by other
users can be fetched by explicitly passing a username to user_id, e.g. to
fetch tweets from the list @exampleuser/example-list you would call
get_activities(user_id=’exampleuser’, group_id=’example-list’).

Twitter replies default to including a mention of the user they’re replying
to, which overloads mentions a bit. When fetch_shares is True, we determine
that a tweet mentions the current user if it @-mentions their username and:

	it’s not a reply, OR

	it’s a reply, but not to the current user, AND
* the tweet it’s replying to doesn’t @-mention the current user

	
fetch_replies(activities, min_id=None)

	Fetches and injects Twitter replies into a list of activities, in place.

Includes indirect replies ie reply chains, not just direct replies. Searches
for @-mentions, matches them to the original tweets with
in_reply_to_status_id_str, and recurses until it’s walked the entire tree.

	Parameters:	activities – list of activity dicts

	Returns:	same activities list

	
fetch_mentions(username, tweets, min_id=None)

	Fetches a user’s @-mentions and returns them as ActivityStreams.

Tries to only include explicit mentions, not mentions automatically created
by @-replying. See the get_activities() docstring for details.

	Parameters:	
	username – string

	tweets – list of Twitter API objects. used to find quote tweets quoting them.

	min_id – only return activities with ids greater than this

	Returns:	list of activity dicts

	
get_comment(comment_id, activity_id=None, activity_author_id=None, activity=None)

	Returns an ActivityStreams comment object.

	Parameters:	
	comment_id – string comment id

	activity_id – string activity id, optional

	activity_author_id – string activity author id. Ignored.

	activity – activity object, optional

	
get_share(activity_user_id, activity_id, share_id, activity=None)

	Returns an ActivityStreams ‘share’ activity object.

	Parameters:	
	activity_user_id – string id of the user who posted the original activity

	activity_id – string activity id

	share_id – string id of the share object

	activity – activity object, optional

	
get_blocklist()

	Returns the current user’s block list.

May make multiple API calls, using cursors, to fully fetch large blocklists.
https://dev.twitter.com/overview/api/cursoring

Block lists may have up to 10k users, but each API call only returns 100 at
most, and the API endpoint is rate limited to 15 calls per user per 15m. So
if a user has >1500 users on their block list, we can’t get the whole thing
at once. :(

	Returns:	sequence of actor objects

	Raises:	
	source.RateLimited if we hit the rate limit. The partial

	attribute will have the list of user ids we fetched before hitting the

	limit.

	
get_blocklist_ids()

	Returns the current user’s block list as a list of Twitter user ids.

May make multiple API calls, using cursors, to fully fetch large blocklists.
https://dev.twitter.com/overview/api/cursoring

Subject to the same rate limiting as get_blocklist(), but each API call
returns ~4k ids, so realistically this can actually fetch blocklists of up
to 75k users at once. Beware though, many Twitter users have even more!

	Returns:	sequence of string Twitter user ids

	Raises:	
	source.RateLimited if we hit the rate limit. The partial

	attribute will have the list of user ids we fetched before hitting the

	limit.

	
create(obj, include_link='omit', ignore_formatting=False)

	Creates a tweet, reply tweet, retweet, or favorite.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose content will be a dict with ‘id’, ‘url’,
and ‘type’ keys (all optional) for the newly created Twitter
object (or None)

	
preview_create(obj, include_link='omit', ignore_formatting=False)

	Previews creating a tweet, reply tweet, retweet, or favorite.

	Parameters:	
	obj – ActivityStreams object

	include_link – string

	ignore_formatting – boolean

	Returns:	a CreationResult whose content will be a unicode string HTML
snippet (or None)

	
upload_images(urls)

	Uploads one or more images from web URLs.

https://dev.twitter.com/rest/reference/post/media/upload

	Parameters:	urls – sequence of string URLs of images

	Returns:	list of string media ids

	
upload_video(url)

	Uploads a video from web URLs using the chunked upload process.

Chunked upload consists of multiple API calls:

	command=INIT, which allocates the media id

	command=APPEND for each 5MB block, up to 15MB total

	command=FINALIZE

https://dev.twitter.com/rest/reference/post/media/upload-chunked
https://dev.twitter.com/rest/public/uploading-media#chunkedupload

	Parameters:	url – string URL of images

	Returns:	string media id or CreationResult on error

	
urlopen(url, parse_response=True, **kwargs)

	Wraps urllib2.urlopen() [https://docs.python.org/2/library/urllib2.html#urllib2.urlopen] and adds an OAuth signature.

	
base_object(obj)

	Returns the ‘base’ silo object that an object operates on.

Includes special handling for Twitter photo and video URLs, e.g.
https://twitter.com/nelson/status/447465082327298048/photo/1
https://twitter.com/nelson/status/447465082327298048/video/1

	Parameters:	obj – ActivityStreams object

	Returns:	dict, minimal ActivityStreams object. Usually has at least id and
url fields; may also have author.

	
tweet_to_activity(tweet)

	Converts a tweet to an activity.

	Parameters:	tweet – dict, a decoded JSON tweet

	Returns:	an ActivityStreams activity dict, ready to be JSON-encoded

	
tweet_to_object(tweet)

	Converts a tweet to an object.

	Parameters:	tweet – dict, a decoded JSON tweet

	Returns:	an ActivityStreams object dict, ready to be JSON-encoded

	
user_to_actor(user)

	Converts a tweet to an activity.

	Parameters:	user – dict, a decoded JSON Twitter user

	Returns:	an ActivityStreams actor dict, ready to be JSON-encoded

	
retweet_to_object(retweet)

	Converts a retweet to a share activity object.

	Parameters:	retweet – dict, a decoded JSON tweet

	Returns:	an ActivityStreams object dict

	
streaming_event_to_object(event)

	Converts a Streaming API event to an object.

https://dev.twitter.com/docs/streaming-apis/messages#Events_event

Right now, only converts favorite events to like objects.

	Parameters:	event – dict, a decoded JSON Streaming API event

	Returns:	an ActivityStreams object dict

	
favorites_html_to_likes(tweet, html)

	Converts the HTML from a favorited_popup request to like objects.

e.g. https://twitter.com/i/activity/favorited_popup?id=434753879708672001

	Parameters:	html – string

	Returns:	list of ActivityStreams like object dicts

	
static rfc2822_to_iso8601(time_str)

	Converts a timestamp string from RFC 2822 format to ISO 8601.

	Example RFC 2822 timestamp string generated by Twitter:

	‘Wed May 23 06:01:13 +0000 2007’

	Resulting ISO 8610 timestamp string:

	‘2007-05-23T06:01:13’

	
user_url(username)

	Returns the Twitter URL for a given user.

	
status_url(username, id)

	Returns the Twitter URL for a tweet from a given user with a given id.

	
tweet_url(tweet)

	Returns the Twitter URL for a tweet given a tweet object.

 nav.xhtml

 Table of Contents

 		granary documentation

_static/comment-close.png

_static/granary_logo_512.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_static/down-pressed.png

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/comment-bright.png

_static/granary_logo_64.png

_static/minus.png

_static/file.png

